The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants.
نویسندگان
چکیده
Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxiliary factors involved in it are only poorly understood. In this work, we have characterized the chloroplast genome-encoded ycf4 (for hypothetical chloroplast reading frame no. 4) gene, previously shown to encode a protein involved in photosystem I (PSI) biogenesis in the unicellular green alga Chlamydomonas reinhardtii. Using stable transformation of the chloroplast genome, we have generated ycf4 knockout plants in the higher plant tobacco (Nicotiana tabacum). Although these mutants are severely affected in their photosynthetic performance, they are capable of photoautotrophic growth, demonstrating that, different from Chlamydomonas, the ycf4 gene product is not essential for photosynthesis. We further show that ycf4 knockout plants are specifically deficient in PSI accumulation. Unaltered expression of plastid-encoded PSI genes and biochemical analyses suggest a posttranslational action of the Ycf4 protein in the PSI assembly process. With increasing leaf age, the contents of Ycf4 and Y3IP1, another auxiliary factor involved in PSI assembly, decrease strongly, whereas PSI contents remain constant, suggesting that PSI is highly stable and that its biogenesis is restricted to young leaves.
منابع مشابه
Y3IP1, a Nucleus-Encoded Thylakoid Protein, Cooperates with the Plastid-Encoded Ycf3 Protein in Photosystem I Assembly of Tobacco and Arabidopsis mm
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged ve...
متن کاملY3IP1, a Nucleus-Encoded Thylakoid Protein, Cooperates with the Plastid-Encoded Ycf3 Protein in Photosystem I Assembly of Tobacco and Arabidopsis W OA
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged ve...
متن کاملY3IP1, a nucleus-encoded thylakoid protein, cooperates with the plastid-encoded Ycf3 protein in photosystem I assembly of tobacco and Arabidopsis.
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged ve...
متن کاملTargeted Inactivation of a Tobacco Intron–containing Open Reading Frame Reveals a Novel Chloroplast-encoded Photosystem I–related Gene
The chloroplast genome of all higher plants encodes, in its large single-copy region, a conserved open reading frame of unknown function (ycf3), which is split by two group II introns and undergoes RNA editing in monocotyledonous plants. To elucidate the function of ycf3 we have deleted the reading frame from the tobacco plastid genome by biolistic transformation. We show here that homoplasmic ...
متن کاملNonessential Plastid-Encoded Ribosomal Proteins in Tobacco: A Developmental Role for Plastid Translation and Implications for Reductive Genome Evolution W OA
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 159 2 شماره
صفحات -
تاریخ انتشار 2012